技术支持

当前位置:首页>技术支持

微弧氧化陶瓷技术与设备

时间:2022-09-07   访问量:1331

微弧氧化陶瓷技术与设备
1 微弧氧化的研究概况
微弧氧化是在偶然之间发现的。研究发现浸在电解液中的金属在高压电场作用下,表面会出现火花放电现象,而这种放电火花对金属表面既有破坏作用,在一定条件下又可能被利用,生成氧化膜。此技术最初是针对铝及其合金的研究开始的。20世纪70年代以后,苏联、美国、德国等国都开始加快了对微弧氧化的研究。

苏联在20世纪80年代开始了钛合金微弧氧化涂层的研究,侧重于对电解液配方的优化、膜层化学成分的分析及其对防护性能的影响,在研究与开发应用方面均属先进。美国和德国的一些单位则侧重于用直流或单向脉冲电源开始在铝、钛等轻金属表面做火花放电沉积膜。20世纪80年代中后期,微弧氧化发展成为一项在国际上研究热门的有色金属表面原位生长氧化物陶瓷层的新技术,成为在阳极氧化理论的基础上做出的重大突破。

国内在20世纪90年代中期开始了此项技术的研究,在铝、镁、钛及合金表面微弧氧化制备耐磨、耐腐蚀膜层的技术及设备研制等方面,分别由北京师范大学的薛文斌及北京有色金属研究总院的朱祖芳等人申请到国家自然科学基金,通过不同的技术路线,
他们开始了钛合金在硅酸盐体系、偏铝酸钠体系中微弧氧化陶瓷层的组织结构、成分分布,以及陶瓷层硬度、弹性模量、耐蚀性能等方面的研究。其后,陆续开展了微弧氧化溶液的组成与浓度对陶瓷层生长速度、相组成的影响,硅酸盐体下电参数对钛合金微弧氧化陶瓷涂层的生长速率、组织形貌和相组成的影响等研究工作。
近几年来,由于在含钙和磷组分的电解液中生成的钛微弧氧化涂层具备较高的抗磨损、抗腐蚀与生物相容性,在骨移植方面引起潜在的兴趣,现已开展了大量研究工作。
总体而言,国内外关于微弧氧化钛合金表面技术仍有待于进一步探索和研究。随着该项技术研究的不断深入及其应用领域的不断拓宽,微弧氧化技术必将显示出广阔的发展前景。
2 钛合金脉冲微弧氧化的原理
微弧氧化或称微等离子体表面陶瓷化技术,是指在普通阳极氧化的基础上,利用弧光放电增强并激活在阳极上发生的反应,从而可使包括钛在内的金属及其合金工件表面形成优质的强化陶瓷膜。该氧化的方法使用的电源功率达到30~400kW(频率为50~2000Hz);电流为0~500A(正、负);额定电压为800V;占空比在5%~95%之间调节;具有选择恒流、恒压和恒功率三种输出功率。
低温脉冲微弧阳极氧化技术的特点是电流间断通过电解槽,钛合金零件在电解液中接阳极。电压升至近百伏时,开始形成该种防护性氧化膜。由于钛合金的这种氧化膜具有很高的绝缘性,要通过不断升高电压击穿先前生成的阳极氧化膜,保持工件的电流密度恒定,使氧化膜增厚,形成连续的、多孔的、高绝缘性的分层分布的氧化膜。在这样的工艺条件下,在钛合金表面形成膜层的硬度类似陶瓷膜,从而达到工件表面强化的目的。
金相试样断面检测了这种氧化膜的微观形貌,可以看到微弧氧化膜分三层。氧化工艺过程分为三个阶段。阳极氧化的最初阶段,贴近基体的、最初生成的一层称为阻挡层,这一层最致密,是高阻值的绝缘层,但厚度仅为1μm以下。发生的反应可推断为:
阳极
Ti+20H→TiO+H20+2e(3-4)
Ti+40H→TiO2+2H20+4e(3-5)
2Al+60H→Al2O3+3H20+6e(3-6)
阴极
2H+2e→H2↑(3-7)
阻挡层覆盖了金属表面时,电流快速降低,使氧化进入第二阶段,即生成加强层。若要使氧化膜增厚,电压要不断升高。由于电化学的极化作用引起了材料表面形成大量的等离子体微弧,即弧光放电现象。在电场力的作用下,氧化物不断地生成,使氧化膜逐渐增厚,膜孔也在“长”大。同时氧化膜的薄弱区不断变化,在微弧的作用下,钛合金表面形成瞬间的高压高温区,生成的氧化膜部分地熔融。脉冲断流时,等离子体微弧消失,电解液迅速将热量带走,熔融物体迅速凝固,氧化膜相互叠起来,使阳极导电面积大幅度下降,电流再次下降。脉冲电流间断时,阳极上溶解下来的游离的钛离子的一部分与槽液中H3PO4解离出来的HPO2 形成水合酸式磷酸钛的沉淀,沉积在氧化膜的微孔中。X射线衍射检查出Ti(HPO4)2H2O化合物。随着电压的不断升高,膜孔不断长大,熔融沉淀物也增多,使得氧化膜快速增厚,这一增厚层称为加强层。氧化膜的厚度可以通过控制最终电压的大小来控制。阳极氧化进人第三阶段时,根据图纸所规定的厚度,将电压升至规定的值。随后电流逐渐变小,保持到规定的时间。这一过程为氧化、熔融、凝固相对平衡阶段。这一层微观结构致密,氧化膜孔被部分封闭,因此,也称为封闭层。
3 微弧氧化技术的一般特点
微弧氧化技术是采用高压电源、大电流,在无污染的电解液中以微弧放电的形式,在钛合金表面生成氧化物陶瓷膜层。因此,与其他表面处理技术相比,该技术具有以下特点:
(1)膜层致密,孔隙率低,这决定了具有高耐腐蚀性能、高强度和硬度以及高性价比。
(2)作为转化膜,陶瓷层从基体上生长,与基体的结合紧密,不容易脱落。
(3)通过改变工艺条件和在电解液中添加胶体微粒实现了膜层的功能设计,可以调整膜层的微观结构、特征,也可以获得新的微观结构,如通过羟基磷灰石使氧化膜的生物活性增强(见图3-10).

微弧氧化膜截面扫描电镜成像 

(4)操作简单,不需要真空或低温条件,前处理工序少,能在内外表面、形状复杂的部件及空心部件上生成均匀膜层,扩大了微弧氧化的适用范围。

(5)陶瓷膜层厚度易于控制且处理的效率高,一般硬质阳极氧化获得50μm左右的膜层需1~2h,而微弧氧化只需10~30min.
(6)对材料的适应性宽,除钛合金外,还能在Al、Zr、Mg、Ta、Nb等金属及其合金表面生长陶瓷膜层。微弧氧化是从普通阳极氧化发展而来的,它突破了传统的阳极氧化电流、电压法拉第区域的限制,把阳极电位由几十伏提高到几百伏,氧化电流也从小电流发展到大电流,由直流发展到交流,致使在样品表面上出现电晕、辉光、微弧放电,甚至火花放电等现象。
4 微弧氧化陶瓷膜的制备工艺
微弧氧化陶瓷膜的制备方法有很多,根据所采用电解液的种类可以分为酸性和碱性氧化法两大类:根据所采用的电源特征可以分为直流氧化法、交流氧化法、脉冲氧化法。由于酸性电解液对环境存在较大污染,所以现在常用的电解液均为碱性。
(1)酸性电解液氧化法。这是初期用微弧氧化制备陶瓷膜的方法。它可在500V左右的电压下,以浓硫酸为电解液制成陶瓷薄膜。另外,采用磷酸或磷酸盐溶液可以获得较厚的氧
化膜。
(2)碱性电解液氧化法。碱性氧化法比酸性氧化法对环境的影响较小,且在其阳极生成的金属离子还可以转变为带负电的胶体粒子而被重新利用。同时,电解液中其他的金属离子也可以进入膜层,调整和改变膜层的微观结构,使其获得新的特性。目前常用的电解液有硅酸盐体系、氢氧化钠体系、铝酸盐体系和磷酸盐体系,其中以硅酸盐体系最为常见。
(3)直流氧化法。在20世纪30年代初期,有研究者发现在高压电场下,浸在某种电解液里的金属表面出现火花放电现象,可生成氧化膜。此技术最初采用直流模式,主要应用在镁合金的防腐性能研究上。
(4)交流氧化法。微弧氧化研究表明,采用交流电源模式,使用的电压比火花放电阳极氧化的电压高,并称之为微弧氧化,后来发展为不对称交流电源。
(5)脉冲氧化法。采用单向脉冲电源进行此项技术的研究,并命名为火花放电阳极氧化。脉冲交流电源因脉冲电压特有的针尖作用,使得微弧氧化膜的表面微孔相互重叠,膜层质量获得提高。微弧氧化过程中,通过正、负脉冲幅度和宽度的优化调整,微弧氧化层性能能达到最佳,并能有效地节约能源。
5 微弧氧化制备陶瓷膜层的影响因素
微弧氧化膜的性能与膜层的表面质量、膜层总厚度及膜层中致密层和疏松层的比例密切相关。致密层占总膜厚的比例越大,膜的硬度和耐磨性、耐蚀性越好。制备陶瓷膜层时的影响因素主要有以下几个方面:
(1)电流密度。电流密度越大,氧化膜的生长速度越快,膜厚度不断增加,但易出现烧损现象:随电流密度的增加,击穿电压升高,氧化膜表面粗糙度增加,氧化膜硬度也增加。
(2)氧化电压。低压生成的膜层孔径小、孔数多,高压生成的膜层则相反,但成膜速度快。电压过低,成膜速度小,膜层薄,膜颜色浅、硬度也低;电压过高,易出现膜层局部击穿,对膜层的耐蚀性不利。
(3)氧化时间。随氧化时间的增加,膜层厚度增加,但存在极限氧化膜厚度,当膜表面微孔密度降低,粗糙度变大。若氧化时间足够长,达到溶解与沉积的动态平衡,对膜表面有一定的平整作用,表面粗糙度反而减小。
(4)溶液温度。温度低时,膜层的生长速度较快,膜致密,性能较佳;但温度过低时,氧化作用较弱,膜厚和硬度值都较低;温度过高时,碱性电解液对氧化膜的溶解作用增强,致使膜厚与硬度显著下降,且溶液易飞溅,膜层易被局部烧焦或击穿。
(5)溶液浓度及酸碱度。溶液浓度对氧化膜的成膜速率、表面颜色和粗糙度都有影响;酸碱度过大或过小,溶解速度都加快,氧化膜生长速度减慢,所以一般选择弱碱性溶液。

6 钛合金微弧氧化的应用
微弧氧化技术的应用总是与其膜层的特性联系在一起的。微弧氧化膜层从特性来分,可分为腐蚀防护膜层、耐磨膜层、电防护膜层、装饰膜层、光学膜层、功能性膜层等,归纳起来,微弧氧化膜层的应用领域见表3-17.
 

表3-17 微弧氧化膜层的应用领域
微弧氧化膜层应用领域
腐蚀防护膜层滑雪设备、建筑材料、泵部件
耐磨膜层纺织机械、发动机部件、管道
电防护膜层电子、化工设备、能源工业
装饰膜层仪器仪表、土木建筑
光学膜层精密仪器
功能性膜层催化、医疗设备、医用材料


表3-17中未包括的还有航空航天和军事工业。在该技术出现并成功地制备了微弧氧化陶瓷膜层后,钛及其合金克服了表面硬度较低、耐磨性较差的不足,因此在机械、汽车、国防、电子、航天、航空、建筑及医学等领域有了广泛的应用空间。微弧氧化后生成的TiO2膜层具有绝缘性好、介电常数高等优良特性,可用于电子材料中;在生物医用材料中,钛及其合金微弧氧化陶瓷膜,在微弧氧化过程中,由于击穿形成的放电通道,可使
硬组织植入材料朝内生长,因此较好地改善了与新生骨的机械啮合,缩短愈合时间;钛合金人工牙、人工关节、人工骨表面经过微弧氧化处理后不仅提高了耐磨、耐蚀性,而且将钙、磷元素直接渗入氧化膜层中,提高了生物相容性,在临床植入体手术中已有少量的
探索性应用:在现代船体结构中,利用微弧氧化技术可在复杂形状及线尺寸相差很大的零件上形成均匀且足够坚硬的镀层,防止在使用中与钛合金接触的由铜、钢、铜基合金制造的管道、管道附件及其他船舶制造零件在海水中腐蚀,同时提高钛及其合金的抗腐蚀性。相信在不久的将来,随着研究工作的不断发展和深入及该技术的不断改进和完善,微弧氧化技术一定会体现出更大的技术价值和经济效益。


亿沐鑫新材料公司产品分类:钛棒钛管钛板钛阳极钛箔钛带钛法兰钛丝钛靶材钛设备钛饼钛环钛标准件钛加工件


上一篇:等温锻造专用压机

下一篇:TA7钛合金的焊接性能

发表评论:

评论记录:

未查询到任何数据!

在线咨询

点击这里给我发消息 售前咨询专员

点击这里给我发消息 售后服务专员

在线咨询

免费通话

24小时免费咨询

请输入您的联系电话,座机请加区号

免费通话

微信扫一扫

微信联系
返回顶部